
Journal of Applied Mechanics and Technical Physics, Vol. 48, No. 6, pp. 871–877, 2007

LONG-TERM STRENGTH OF METALS AND CREEP EQUATIONS

BASED ON THE COULOMB–MOHR CRITERION

UDC 539.376A. M. Kovrizhnykh,1 V. D. Baryshnikov,1

A. V. Manakov,1 and A. F. Nikitenko2

It is proposed to construct long-term strength and creep relations for metals on the basis of the
Coulomb–Mohr criterion. The creep equations and the long-term strength criterion for plane stress
are analyzed in detail. Results of long-term strength calculations are compared with data of ex-
periments with metallic materials. It is established that theoretical and experimental results are in
satisfactory agreement.
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Over the past 50 years, extensive studies of the creep and long-term strength of metals in a complex stress
state have been performed. An overview and analysis of some experimental studies can be found in [1–11].

To determine the rupture time of a structural member in a complex stress state under creep conditions, it
is necessary to choose the long-term strength criterion corresponding to the test conditions. The chosen criterion is
used to determine the equivalent stress states leading to rupture for the same time and to calculate this time using
data of a simple test (in uniaxial tension, compression or pure shear). As a rule, the creep equations are based on
a version of plasticity theory, and the long-term strength criterion on strength theory. This is due to the fact that
by the time of publication of the first papers on the technical theories of creep, the classical plasticity equation and
the basic strength theories had already been formulated [1].

In plasticity theory, the Coulomb–Mohr criterion is used for soils and rocks. This is likely the reason why
this criterion has not currently been used to study the long-term strength of metals.

The applicability of the Coulomb–Mohr criterion to the plastic deformation of metals has been proven by
various experimental results [12]. It has been established [13] that, for metals, rocks, soils, and loose media, this
criterion provides adequate accuracy in determining the limiting stresses and the rupture directions identified with
the characteristics of the equations for the rate field. For an arbitrary stress state, the Coulomb–Mohr criterion is
written as

max
n

{
|τn| + σn tan ϕ

}
= C, (1)

where τn and σn are the tangential and normal stresses in a plane with normal n, ϕ is the internal friction angle,
and C is the cohesion.

Numbering the principal axis by I, II, and III so as to satisfy the inequalities

σI > σII > σIII, (2)

we write criterion (1) as
σI − σIII

2 cosϕ
+
σI + σIII

2
tan ϕ = C. (3)
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For various dependences of the cohesion C on the rupture time t∗ in (1) or (3), we obtain different versions of the
Coulomb–Mohr long-term strength criterion. If the left side of equality (3) is used as an equivalent stress σe, then,
for the power-law dependence with zero and nonzero creep strength σ0, the rupture time is defined, respectively, by
the formulas

t∗ = Anσ−n
e , t∗ = An(σe − σ0)−n,

where A and n are the material characteristics calculated from results of experiments. From these formulas, for the
long-term strength criterion (3) we have, respectively,

C(t∗) = A/t
1/n
∗ , C(t∗) = σ0 +A/t

1/n
∗ .

From results of two experiments with uniaxial tension and torsion, using criterion (3) it is possible to obtain
the internal friction angle ϕ and the long-term strength C = C(t):

sinϕ = 2τs/σt − 1, C = (1 + sinϕ)σt/(2 cosϕ) (4)

(τs and σt are the long-term strength for torsion and uniaxial tension, respectively).
Experimental results of Johnson [5] show that for long-term behavior of a material at high temperatures,

the maximum normal stresses σe1 = σ1 can serve as the strength criterion. Kats [14] processed experimental data
using the normal stress intensity as the criterion:

σe2 =
√

(σ1 − σ2)2 + (σ2 − σ3)2 + (σ1 − σ3)2/
√

2. (5)

Sdobyrev [7, 8] proposed a criterion which is in good agreement with experimental data and is represented
as the half-sum of the stress intensity and the maximum normal stresses:

σe3 = (σe2 + σe1)/2.

The possibility of using this criterion is confirmed by the results of experiments of Trunin [10]. For the rupture
of metals under long-term constant loading, Lebedev [11] proved the applicability of a generalized criterion which
includes the quantities σe2 and σe1 and a certain coefficient χ dependent on the properties of the material:

σe4 = χ(σe2 − σe1) + σe1. (6)

The coefficient χ can be defined as a quantity that characterizes the contribution to the macrorupture
from shear deformation, which creates favorable conditions for loosening of the material in. For χ = 0, when the
rupture is determined only by the strength of grain boundaries, criterion (6) becomes the Johnson criterion [5]. The
coefficient χ = 1 if rupture results from shear processes inside a grain; in this case, criterion (6) coincides with the
Kats criterion (5). The coefficient χ = 0.5 if the softening effect of shear deformation is equivalent to the effect of
normal stresses; in this case, criterion (6) coincides with the Sdobyrev criterion [7, 8].

For creep, as well as for plasticity [12, 13], using the Coulomb–Mohr criterion (3), in view of (4), is justified.
For ϕ = 0, the intracrystalline rupture mechanism is dominant, and, in this case, criterion (3) coincides with the
maximum tangential stress criterion. For ϕ = π/2, the intercrystalline rupture mechanism is dominant, and, in this
case, criterion (3) coincides with the Johnson criterion [5].

Below, we give the results of experimental studies [7, 8, 10] of the long-term strength of thin-walled cylindrical
samples loaded by a tensile force and a twisting moment.

The tests in [10] were performed for 1Kh18N12T austeinitic steel at a temperature of 610◦C and for
15Kh1M1F pearlitic steel at a temperature of 570◦C. In both cases, three series of experiments with tubular
samples were conducted: 1) uniaxial tension (σx = σ and τxy = 0); 2) pure torsion (σx = 0 and τxy = τ); 3) joint
tension and torsion (σx = σ and τxy = σ/2). As a rule, experimental data are processed as follows: a combination
of stress tensor invariants is used as an equivalent stress σe, a power-law or exponential dependence of t∗ on σe

(t∗ = Aσ−m
e or t∗ = B · 10−σe/n) is chosen, and, accordingly, long-term strength diagrams are constructed in log-

arithmic coordinates (log t∗, log σe) or semilogarithmic coordinates (log t∗, σe) and are approximated by straight
lines. The straight line equation for each value of the stress σe is determined by the least-squares method using
the dispersion D of the distances from the experimental points to this straight line as a characteristic of the scatter
of experimental data. The equivalent stress σe corresponding to the minimum dispersion Dmin is chosen as the
long-term strength criterion. In [6], this technique was employed to perform statistical processing of all known
experimental data and long-term strength criteria were obtained for various materials under various test conditions.
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Fig. 1. Results of processing of the experimental data of [10] for 1Kh18N12T steel samples (a) and
15Kh1M1F steel samples (b) using the Coulomb–Mohr criterion: 1) torsion; 2) tension; 3) tension
and torsion; the curve is a least-squares approximation of experimental data.
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Fig. 2. Results of processing of the experimental data of [7] (a) and [8] (b) using the Coulomb–Mohr
criterion (notation the same as in Fig. 1).

The calculations for austenitic and pearlitic steels were performed using the same technique. Experimental
points (log t∗, τs) for torsion and (log t∗, σt) for uniaxial tension were plotted in semilogarithmic coordinates;
straight lines were drawn through the points using the least-squares method. Then, using formula (4) by averaging
for 100 and 1000 hr, the internal friction angle ϕ = 23.2◦ was found for austenitic steel and ϕ = 22.6◦ for pearlitic
steel. Figure 1 gives the results of processing of the experimental data of [10] in semilogarithmic coordinates (log t∗,
σe5), where σe5 is determined by the Coulomb–Mohr criterion (3). The logarithm of the rupture time t∗ (time is in
hours) is plotted on the abscissa.

The experimental data of [7, 8] for ÉI437B alloy were processed similarly; the results are presented in
semilogarithmic coordinates (log (100t∗), σe5) in Fig. 2. For ÉI 437B [7] alloy, the internal friction angle is ϕ = 34◦,
and for ÉI437B alloy of another heat (51364 heat) [8], ϕ = 28◦. For each criterion of σej (j = 1, . . . , 5), the
standard deviation of the experimental points from the linear dependence constructed by the least-squares method
was determined:

Δj =
√
Dj , Dj =

1
n− 1

n∑
i=1

(σi
ej − σej(ti))2, j = 1, . . . , 5.

Here Dj (j = 1, . . . , 5) is the dispersion of the distances from the experimental points to the corresponding linear
long-term strength dependences.
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TABLE 1

Relative Standard Deviation of Experimental Data
from the Linear Dependence According to Various Criteria

Material Δ1/Δ [5] Δ2/Δ [14] Δ3/Δ [7] Δ4/Δ [11] χ Δ5/Δ ϕ, deg

1Kh18N12T steel [10] 3.86 3.25 1.31 1.28 0.58 1.00 23.2
15Kh1M1F steel [10] 3.38 2.35 1.34 1.21 0.61 1.00 22.6

ÉI437B alloy [7] 1.39 2.31 1.14 1.00 0.275 1.03 34,0

ÉI437B alloy [8] 4.15 4.14 1.11 1.11 0.50 1.00 28.0

s1

s3

_sc

_sc

st

st

A D

C
B

F E

Fig. 3. Coulomb–Mohr criterion in the stress plane (σ1, σ3).

The results of processing of the experimental data of [7, 8, 10] using different long-term strength criteria
are presented in Table 1. For each criterion, the table gives the standard deviation Δj/Δ, where Δ = min

j
Δj ,

j = 1, . . . , 5. In contrast to σe1, σe2, and σe3, the criteria σe4 and σe5 depend on the material constants χ and ϕ,
respectively. The values of χ and ϕ given in Table 1 were calculated using the same technique for each series of
experiments: the average values of χ and ϕ for each material were first determined from two values of the rupture
time, and then, if necessary, they were refined by using the minimum condition for the dispersion D.

A comparison of the results given in Table 1 and Figs. 1 and 2 leads to the conclusion that the Coulomb–
Mohr long-term strength criterion provides better agreement with the experimental data of [7, 8, 10] than the most
widely used criteria listed above.

Let us consider the creep equations based on the dilatation-shear theory of plasticity [12]. If inequality (2)
is satisfied, the creep strain rate tensor components in the principal stress axes obey the following relations:

ėI =
α(1 + sinϕ) + cosϕ

2
γ̇2, ėII = 0, ėIII =

α(1 − sinϕ) + cosϕ
2

γ̇2 (7)

(α is the dilation coefficient). For short-term loading of an ideally plastic material, γ̇2 is an unknown parameter,
which is found by solving a particular problem; in the case of a strain-hardening material, γ̇2 is determined by
the stress level attained and stress increments [12]. For long-term loading under creep conditions, from yield and
hardening theories we have, respectively,

γ̇2 = f1(τ2, t), γ̇2 = f2(γ2, τ2).

Let the principal stress σy = σ2 = 0, and let σ1 and σ3 be the other two principal normal stresses. Then, the
intersection of the Coulomb–Mohr pyramid with the stress plane (σ1, σ3) forms an irregular hexagon ABCDEF

(Fig. 3), whose sides and vertices belong to the faces and edges of a pyramid, respectively. Depending on the sign
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and value of the principal stresses σ1 and σ3, the limiting state can be attained in various areas; therefore, the plane
stress equations for the Coulomb–Mohr criterion are different for different loading modes. If the stresses σ1 and σ3

have opposite signs, the limiting state is attained in areas perpendicular to the planes (x, z) and passing through
the axes corresponding to the second principal direction. In this case, in the plane (x, z) there are two families of
characteristics for which the following relations are valid:

dz

dx
= tan (θ − ψ), cot ϕ ln

(
1 − σ

C
tan ϕ

)
+ 2θ = const = ξ,

dz

dx
= tan (θ + ψ), cot ϕ ln

(
1 − σ

C
tan ϕ

)
− 2θ = const = η.

(8)

Here ψ = ψσ = π/4 + ϕ/2 is the angle between the characteristic of the first set (α-line) and the first principal
direction of the stress tensor σ1; θ is the angle between the direction of σ1 and the x axis: tan 2θ = 2τxz/(σx − σz).
In the following, equations of characteristics of the form (8) are also used for rates. Relations (8) are valid for mode
DE, where σ1 > σ2 > σ3, and for mode AB, where σ3 > σ2 > σ1.

The equations for the rate field in the given loading modes for the nonassociated model [12] were obtained
for the first time in [13]:

tan (2θ)
∂vx

∂x
− ∂vz

∂x
− ∂vx

∂z
− tan (2θ)

∂vz

∂z
= 0,

(a cos (2θ) − b)
∂vx

∂x
+ (a cos (2θ) + b)

∂vz

∂z
= 0

(9)

(a = 1 + α tan ϕ and b = α/ cosϕ). The given system of differential equations is a hyperbolic system, and the
directions of its characteristics are uniquely determined by the internal friction angle ϕ and the dilatation coefficient
α. For α = tan ϕ, the characteristics of Eqs. (9) for the rate field coincide with the characteristics of the stress field
equations (8).

Let us consider mode CD, for which σ1 = σt > σ3 > σ2 = 0 (σt is the long-term strength for uniaxial
tension). In this case, in deriving equations for stresses and rates on the basis of (2) and (3), one needs to set
σI = σ1, σII = σ3, and σIII = σ2. We use the following notation:

(σ1 + σ3)/2 = σ, (σ1 − σ3)/2 = σt − σ. (10)

Using the formulas of transformation of the stress components and notation (10), we obtain

σx = σ(1 − cos 2θ) + σt cos 2θ, τxz = (σt − σ) sin 2θ, σz = σ(1 + cos 2θ) − σt cos 2θ.

Substituting the stress components into the equilibrium equations and performing some transformations, we have
[15]

sin (θ)
∂θ

∂x
− cos (θ)

∂θ

∂z
= 0,

sin (2θ)
∂ ln (σ − σt)

∂x
− (1 + cos 2θ)

∂ ln (σ − σt)
∂z

+ 2
∂θ

∂x
= 0.

(11)

For the first equation of system (11), the system of differential equations for the vector lines is written as

dx

sin θ
=

dz

− cos θ
=
dθ

0
, (12)

which is easily integrated: θ = const = C1 and z + x cot θ = C2.
Thus, the general solution of the first equation of system (11) is given by

z + x cot θ = Φ(θ), (13)

where Φ(θ) is an arbitrary function determined from specified boundary conditions.
For the second equation of system (11), the system of differential equations for the vector lines is written as

dx

sin 2θ
=

dz

−(1 + cos 2θ)
=
d ln (σ − σt)
−2 ∂θ/∂x

. (14)
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In the plane (x, z), system (14) has the same set of characteristics as system (12), and, hence, system (11) is a
parabolic system. Along the characteristic of system (14), we have

d ln (σ − σt) = −2
∂θ

∂x

dx

sin 2θ
.

Integration of this relation in view of (13) yields the general solution of the second equation of system (11):

σ = σt +
Ψ(θ)

2x+ (1 − cos 2θ)Φ′(θ)
.

Let us derive equations for the rate field for mode CD. Using (7), we determine

ėx = ė1(1 + cos 2θ)/2, ėz = ė1(1 − cos 2θ)/2, γ̇xz = ė1 sin 2θ

in arbitrary coordinates (x, z). Eliminating ė1 from these relations, we obtain the following system of equations for
the rates:

tan (2θ)
∂vx

∂x
− ∂vz

∂x
− ∂vx

∂z
− tan (2θ)

∂vz

∂z
= 0,

(1 − cos 2θ)
∂vx

∂x
+ (1 + cos 2θ)

∂vz

∂z
= 0.

This system of differential equations is a parabolic system and has one characteristic direction, which coin-
cides with the direction of σ3. The equation of the characteristic and the relation on it are written as

dz

dx
= − cot θ = tan (θ + π/2), dv3 + v1 dθ = 0,

where v1 and v3 are the projections of the rate vector onto the principal stress axes.
Let us consider mode AF , for which σ2 = 0 > σ3 > σ1 = −σc. Here σc = σt(1 + sinϕ)/(1 − sinϕ) is the

long-term strength for uniaxial compression. Similarly, one can obtain the general solution for the stresses in mode
AF :

z + x cot θ = Φ(θ), σ = −σc +
Ψ(θ)

2x+ (1 − cos 2θ)Φ′(θ)
,

and to show that the characteristics of the equations for the rate field and the relations on them are identical for
modes AF and CD.

Let us consider mode BC, for which σ3 = σt > σ1 > σ2 = 0. For this mode, the general solution for the
stresses is given by

z − x tan θ = Φ(θ), σ = σt +
Ψ(θ)

2x+ (1 + cos 2θ)Φ′(θ)
. (15)

In this case, the system of differential equations for the rate vector components is written as

tan (2θ)
∂vx

∂x
− ∂vz

∂x
− ∂vx

∂z
− tan (2θ)

∂vz

∂z
= 0,

(1 + cos 2θ)
∂vx

∂x
+ (1 − cos 2θ)

∂vz

∂z
= 0.

This system is a parabolic system, whose characteristic coincides with the direction of σ1. The equation of the
characteristic and the relation on it are written as

dz

dx
= tan θ, dv1 − v3 dθ = 0. (16)

For loading in mode EF , we have σ2 = 0 > σ1 > σ3 = −σc. For this mode, as well as for mode BC, the
characteristics of the stress and rate equations coincide with the direction of σ1. The relation on the characteristic
for stresses is obtained from (15) by replacing σt by −σc. The relations for rates in mode EF coincide with (16).

The equations of an inelastic creeping body for the rate field at the edges of the Coulomb–Mohr pyramid
(modes B and D in Fig. 3) coincide with Eqs. (9) but the quantities a and b have different values. This type of
loading includes uniaxial tension. The angle between the characteristic of the equations for the rate field and the
first principal direction of the stress tensor is found from the formula [13]
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cos 2ψ = − b

a
= − cosϕ+ α(3 + sinϕ)

3 cosϕ+ α(3 + sinϕ)
. (17)

For modes A and E, which include uniaxial compression as a particular case, the angle ψ is determined from
the formula

cos 2ψ =
cosϕ− α(3 − sinϕ)

3 cosϕ− α(1 − 3 sinϕ)
. (18)

Results of experiments on rupture of steel tubes loaded by an axial force and internal pressure under creep
conditions are presented in [1]. If the maximum tensile stress is tangential, the cracks are longitudinal. If the
maximum tensile stress in a tube is axial, the cracks are predominantly annular. Results of uniaxial compression
experiments with prismatic specimens of saliferous rock under long-term loading in creep with subsequent rupture are
given in [16]. It has been established that in the case of long-term loading, rupture is manifested in increasing strain
rate and formation of longitudinal cracks but the sample does not lose the load bearing ability. The experimental
data agree with the results of calculations using formulas (17) and (18) in two cases: 1) if one sets α = tan ϕ and
ϕ = π/2; 2) if one sets α = cosϕ/(1 − sinϕ). In both cases, from (17) and (18), we obtain ψ = π/2.

The above comparison of theoretical and experimental results on the long-term loading of various materials
under creep conditions allows one, using the Coulomb–Mohr criterion, to determine the limiting stresses and the
rupture directions which coincide with the characteristic directions of the equations of an inelastic creeping body
for the rate field.

This work was supported by the Russian Foundation for Basic Research (Grant No. 05-08-33470).
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